SYNTHESIS, STRUCTURE AND PROPERTIES OF THE DIFLUOROBORANES OF SUBSTITUTED 2-PHENACYLBENZOXAZOLES AS POTENTIAL PHOTOSENSITIZERS IN THE PHOTOPOLYMERIZATION PROCESS

Agnieszka Skotnicka, Janina Kabatc

Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland

Organoboron complexes are one of the most important types of fluorescent dyes. The proton involved in intramolecular hydrogen bonding of substituted 2-phenacylbenzoxazoles can be easily replaced by another acid such as the BF_2^+ cation. The presented study provides a report on the basic photophysical properties of a recently synthesized series of substituted 2-phenacylbenzoxazole difluoroboranes (Scheme 1) with a view towards the effect of substitution on their properties [1].

Scheme 1. The schematic representation of the synthesis of 2-phencylbenzoxazole difluoroboranes where $R = 4\text{-NMe}_2(1)$, 4-OMe (2), 4-Me (3), 3-Me (4), H (5), 3-OMe (6), 4-Cl (7), 3-Cl (8).

1 - 8

Complexes have been identified based on a magnetic atomic nucleus ¹H, ¹¹B, ¹³C, ¹⁵N, and ¹⁹F isotope resonance spectra. The photophysical properties of these new dyes have been investigated by fluorescence and ultraviolet-visible (UV-Vis) absorption spectroscopy. The changes in Stokes shifts and the molar absorption coefficients related to the nature of the substituent in 2-phenacyl moiety are also reflected in changes in the fluorescence quantum yields. The study using these compounds as photosensitizers in the photopolymerization process is still in progress.

^[1] A. Skotnicka, P. Czeleń, *Molecules* **2020**, 25, 5420. doi:10.3390/molecules25225420